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APPLICATION OF STABILITY THEORY TO LAMINAR FLOW CONTROL

In order to design LFC* configurations, one needs reliable methods for

boundary-layer transition prediction. Among the available methods, there

are correlations based upon RA, shape factors, Gortler number and crossflow

Reynolds number. These correlations derived from experimental information

have limited scope. The most advanced transition grediction method is based

upon linear stability theory in the form of the e_ method which has proven

to be successful in predicting transition in two- and three-dimensional

boundary layers and, in particular, studying the sensitivity of boundary-

layer transition to various control parameters such as pressure gradient,

suction, and wall temperature.

*Laminar-flow Control (LFC).

m LFC DELAY OF BOUNDARY-LAYER TRANSITION USING MEANS SUCH AS PRESSURE GRADIENT,

SUCTION, WALL TEMPERATURE, ETC.

e NEED FOR TRANSITION PREDICTION METHODS

m AVAILABLE METHODS

CORRELATIONS BASED UPON R0 , SHAPE FACTORS. G_RTLER NUMBER, CROSSFLOW

REYNOLDS NUMBER, ETC.

PREDICTION METHODS BASED UPON BOUNDARY-LAYER STABILITY THEORY
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EVOLUTIONARY PATHS IN I_II_IIqJRBU-I_NT TRANSITION

There are various stages involved in the transition process. External

disturbances in the form of freestream vorticity, sound, entropy spots,

surface roughness and surface vibrations get internalized in the boundary

through a process known as "receptivity" -- a phrase first coined by

Morkovin (Ref. i). These internalized small disturbances begin to grow past

a critical Reynolds number. At first the disturbances grow exponentially

(according to linear theory) in the form of Tollmien-Schlichting (T-S),

Gortler or crossflow waves until nonlinearity sets in and then secondary and

perhaps tertiary instabilities in the flow cause transition. We are

beginning to understand more and more about receptivity and nonlinear stages

now. We know, for example, that flow nonhomogeneities play an important role

in receptivity process (Refs. 2-5). In recent years, considerable progress

has been made in understanding nonlinear stages of transition process (Refs.

6-10). More advances will certainly be made both in the field of

receptivity and nonlinear breakdown mechanism. But transition essentially

depends upon the disturbance environment and it is the lack of detailed

quantitative characterization of the disturbance environment that we will

always have to rely upon empirical information for transition prediction in

practical situations.

Transition may also take place through nonlinear mechanisms by passing

the usual linear mechanism. An example is the swept attachment line

boundary layer which exhibits subcritical transition (Ref. ii). However, if

the initial disturbance level is kept low the linear process (exponential

growth) is, in general, involved and its extent (in terms of distance along

the body and total amplification) is quite large in comparison with the

nonlinear process and this essentially leads to the success of the e N

method.

It is at the linear state that control, whether "passive" (through

boundary layer modification) or "active" (through disturbance cancellation)

is possible. Though some CFD studies indicate possibility of control at

nonlinear stages too (Ref. 12). An LFC designer, however, ought to be

conservative and keep the amplitudes low.
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EVOLUTIONARY PATHS IN LAMINAR/TURBULENT TRANSITION

EXTERNAL OISTORBANCES I 
FREESTREAM VORTICITY

FREESTREAM SOUND

FREESTREAM ENTROPY SPOTS

SURFACE ROUGHNESS

VIBRATIONS

SLOW

RECEPTIVITY]

L
LINEAR AMPLIFICATi;i_

T-S INSTABILITY _--I

GORTLER INSTABILITY

CROSSFLOW INSTABILITY

f
BYPASSES

3-D NONLINEAR

SPACE TIME

DISTURBANCES_

--- SEC0NDAR-i-A--iD.....

_ TURBULENCE

I OPERATION MODIFIERS i

MEAN BOUNDARY DISTURBANCE
i
LAYER PROPERTIES PROPERTIES

P(x) ACTIVE

Tw/TR CONTROL
M

CURVATURE HEATING OR

WAVINESS COOLING

ROUGHNESS MASS

ANGLE OF ATTACK TRANSFER,

LEADING EDGE ETC. TO

SWEEP CANCEL

ROTATION DISTURBANCE
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THE eNHETHOD FOR TRANSITION PREDICTION

The e N method was first used by A.M.O. Smlth in 1952" (Ref. 13) for

Gortler instability on concave surfaces, though the work remained classified

and was not published until 1955 (Ref. 14). By that time, both Smith and

van Ingen (Ref. 15, 16) independently had shown that, for two-dlmenslonal

flows, the eN method could correlate low disturbance experimental data with

N approximately 9 and the method came to be known as the e 9 method.

The necessary steps involved in application of the e N method are: (I)

computation of mean boundary layer profiles accurately, (2) computation of

linear amplification rate by an "&pproprlate stability model," and (3)

integration of the growth rate from onset of instability x 0 to transition

initiation location x_. The value of the integral is equal to the exponent
in e N and is commonly_nown as the "N factor "

• CALCULATE MEAN BOUNDARY-LAYER PROFILES

i CALCULATE LINEAR AMPLIFICATION RATE BY USING "APPROPRIATE STABILITY MODEL"

TRANSITION OCCURS WHEN DISTURBANCES IN THE BOUNDARY LAYER ARE FIRST

AMPLIFIED BY A FACTOR eN WHERE

N =

x T

_n(A/A O) = /

×0

(LINEAR AMPLFICATION RATE) dx

(SMITH, 1952)

*Smith, A.M.O.: Design of the DESA-2 Airfoil. Douglas Aircraft Co.,

ES17117, AD143008, 1952. (Reference 13 mentions 1952 reference.)
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REVIEW OF LINKAR STABILITY THEORY

The first question one asks is: "What is the "appropriate stability

model" for computation of the linear growth rates?" The simplest of the

model is the Orr-Sommerfeld equation, which is a fourth-order ordinary

differential equation in the disturbance stream function ¢ derived from the

Navier-Stokes equation written in the cartesian coordinates x,y,z, where y

is the normal boundary layer coordinate and x and z are in the plane

parallel to the surface. In deriving this equation it is assumed that mean

flow profiles such as U in the direction of X and W in the direction of Z

are functions of y only. This is the well-known "parallel flow" assumption.

The disturbance is assumed to have a waveform with wave numbers _, B in x

and z directions respectively and m is the disturbance frequency.

We have an eigenvalue problem, given by the dispersion relation,

meaning that nontrivial solution of the Orr-Sommerfeld equation exists only

for certain combinations of _, B, and m. In general, _, B, m can all be

complex. However, we can talk in terms of temporal or spatial theories

-_ix-Bi z wit
where either e or e is set to unity. The Orr-Sommerfeld equation

is a model equation for T-S or crossflow disturbances in incompressible

flows.

ORR-SOMMERFELD EQUATION (INCOMPRESSIBLE FLOW)

B. C.

d2
dy2

,I(0)= ¢'(0) = 0; $ = O, '_' = 0 WHEN y = oo

DERIVED FROM NAVIER-STOKES EQUATION USING PARALLEL FLOW ASSUMPTION AND

BY ASSUMING

i(:_rX+_:rz-_rt) -c_.x-_iz ....t
u(x,y,z,t) = U(y) + _y(y)e e i e i

EIGENVALUE PROBLEM: _(_, i)

TEMPORAL THEORY

SPATIAL THEORY
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LINEAR STABILITY THEORY (CONCLUDED)

When effects of curvature (body or streamline) are important, as in the
Gortler problem, then the governing equations become sixth-order.

The governing equations for compressible stability with or without

curvature are, in general, eighth-order. There, for hypersonic flows, one

needs to worry about real gas effects. Some recent calculations (Ref. 17)

at Mach i0 show their significance.

Boundary layer flows, in general, are nonparallel. For comparison with

stability experiments on quantities such as disturbance elgenfunctions and

growth rates, it is advisable to use nonparallel stability theory (Ref.

18). Since the eN method is essentially a correlation with experimental

data, it is not necessary to use nonparallel theory for transition predic-

tion purposes. Use of nonparallel theory, say for two-dimenslonal boundary-

layer flows analyzed by Smith (Ref. 15), will simply shift the value of N

from 9 to some other value (say 12) and the method would have been known as
the e12 method.

. SIXTH-ORDER SYSTEM (INCOMPRESSIBLE FLOW)

- EFFECT OF CURVATURE (BODY AND STREAMLINE)

- EFFECT OF ROTATION

. COMPRESSIBLE STABILITY

- EIGHTH-ORDER SYSTEM OF EQUATION

- PHYSICAL AND TRANSPORT PROPERTIES (PERFECT OR REAL GAS)

. NONPARALLEL STABILITY
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COMPUTATION OF N FACTORS

An example of a typical eN calculation is provided in this figure. In

reality disturbances develop in the form of "wave-packets," but then

questions regarding initial conditions and the origins of these packets

arise. So for the eN purposes, it is common to consider monochromatic waves.

Calculations for a fixed frequency are performed and repeated for others.

When a frequency first reaches an N factor of, say I0, transition is said to

initiate. In this figure, for example, transition takes place at R of about

2500 where a frequency F = .2 x 10-4 first reaches N = i0. To compare

experimental transition data, one could generate an N versus an F curve at

the transition location, and the peak of such a curve then gives a relevant

N factor.

i0° SHARP CONE, M = 1.5
oO

N

12

10

8

F

6

4-

2-

0

500

F = .2 x i0-4

F = .15 x 10-4

,3 x i0-4 F = ,125 x i0 -4 2_ e
F- f (Hertz)

u2

1000 1500 2000

R

F = ,1 x 10-4

I

2500 3000

R = (Rx)I/2
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TRANSITION N FACTORS FOR QUIET TUNNEL AND F-15 CONE DATA

The N versus F curves have been generated for the experimental

transition data listed in the table. These data are for i0° sharp cones

from F-15 flight and the Mach 3.5 Langley quiet tunnel. Calculations are

made using adiabatic wall conditions to closely match the experimental

conditions. Eigenvalues are computed using the full elght-order system.

Note that the peak of all the curves for the first six test cases listed in

the table lle between about 9 and II. So the eN method (with N from 9-11)

is successful in correlating with experimental transition data at Mach 1.2

to 3.5. For the last case (QT3) listed in the table, the N factor was

calculated to be 6 at the last computational station indicating no

transition. This is consistent with the experiment where flow was still

laminar at the last measurement station and the cone was not long enough to

have transition. External disturbances in these experiments are believed to

be low - a necessary condition for the success of the eN method.

Correlation with experimental data from conventional supersonic wlnd tunnels

would yield low values of N (2-4) since they have hlgh level of freestream

disturbances.

10o SHARP CONE

CASE M. U/v Ree e tr

I.D. X 1061m x 106

FLI 1.20

FL2 1.35

FL3 1.60

FL4 1.92

QTI 3.5

QT2 3.5

QT3 3.5

9 16

9 28

II 55

14 19

29 46

19 94

9 50

6 99

5 59

7 86

7 26

8 08

6 74

14

12

10

8

N

6

4

2

0

FL3 -Z'-E1

"_QTI

I I I I I
1 2 :3 4 5

Fx 105
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TRANSITION IN A BOUNDARY LAYER APPROACHING SEPARATION

When flow approaches separation, the validity of both the boundary-

layer theory and the Orr-Sommerfeld equation becomes questionable. However,

amplification rates become large due to the development of inflectional

velocity profiles and any error committed by the eN method in predicting

transition becomes small in terms of surface distance. The figure presents

results for the most amplified frequency in the boundary layer over the

Beechcraft T-34C NLF glove. In the experiment (Ref. 19), transition took

place at X/C = .44 and separation occurred at X/C = .45. At X/C = .44, the

N factor is 12.8. N increases very rapidly beyond X/C = .4 due to

inflectional streamwise velocity profiles (note that this is an unswept

airfoil). If an N of i0 had been used to predict onset of transition in

this experiment, a value of (X/C)transition = .42 will result as compared to

•44 observed in the experiment.

BEECHCRAFTT-34C NLF GLOVE

M = 0.27, R = 12.6 x 106, CL = 0.35

16

12 --

8--

u_--

0
0

MOST AMPLIFIED /

FREQUENCY (2250 Hz) /

/
(X/C)TRANSITION = .44

(X/C)SEPARATION .45

I I
•I .2 .3 ._ .5

xIc
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AMPLIFICATION OF GORTLER VORTICES ALONG A MACH 3.5 NOZZLE WALL

The question of Gortler or centrifugal instability has been a subject

of controversy for many years. The attempts have been made to obtain a

critical value of the Gortler number. It was pointed out by Hall (Ref. 20)

that parabolic PDE's need to be solved for this problem in which case

neutral curves are not unique since they depend upon initial conditions. If

one thinks of transition taking place at an N of 9-11, then the parameters

that are involved which give such a growth are not significantly affected by

the region of controversy (low wavenumber region) and computations may be

made using parallel flow theory. We tested this for various quiet tunnel

test runs where transition on the nozzle walls takes place due to the

amplification of Gortler vortices. The transition location could be

correlated in those cases with an N factor of 9-11 (see Ref. 21). The

success of parallel flow theory implies that perhaps asymptotic theory will

also be successful. In this figure, N factor results are presented for Mach

3.5 nozzle wall using parallel (Ref. 21) and asymptotic (Ref. 22)

theories. Both theories give results that are quite close for design

purposes. The asymptotic theory requires an order of magnitude less

computer time since eigenvalue computations are not involved.

12

10

8

6

2

'N FACTOR USING

ASYMPTOTIC THEORY

N FACTOR USING

PARALLEL FLOW THEORY

\

=

f I I I I I

30 _O 50 60 70

= PRESSURE GRADIENT

PARAMETER

0
J

20 80

DISTANCE FROM THROAT, CM
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TRANSITION IN 3-D BOUNDARY LAYERS

Stability computations are very sensitive to the details of the mean

boundary-layer profiles which, therefore, have to be computed accurately.

Anything that affects boundary-layer profile shape also indirectly affects

their stability. So, inviscid solution has to be accurately prescribed and

should be free of any unwanted wiggles. Boundary-layer computation is a

rather trivial matter for two-dimensional flows but this is certainly not

the case for three-dimensional configurations. To date, almost all swept-

wing computations have been done using conical similarity using computer

codes similar to the one due to Kaups and Cebeci (Ref. 23). While comparing

the stability calculations with experimental data, one has to know if the

conical similarity assumption, which requires straight isobars, is valid.

If spanwise pressure gradient is present, the computed crossflow and thus,

the crossflow instability will be in error by an unknown magnitude.

• MEAN FLOW

INVISCID

COMPUTED, EXPERIMENTAL

BOUNDARY LAYER

FULLY 3-D, CONICAL ASSUMPTION

• STABILTIY EQUATIONS

- EFFECT OF CURVATURE (BODY. STREAMLINE)

e UNSTEADY VERSUS STEADY DISTURBANCES NEAR THE LEADING EDGE
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TRANSITION IN 3-D BOUNDARY LAYERS (CONTINUED)

In the stability of three-dimensional boundary layers, the question

that immediately arises is how waves propagate in these boundary layers or

the bottomllne question "how to compute N?"

One can start with spatial stability theory. There are five

parameters: real parts of a, 8, _ and imaginary parts of _, 8. Two

conditions are provided by the dispersion relation itself. Since we

consider monochromatic waves, the real part of _ is also fixed. So, two

more conditions need to be specified. Nayfeh (Ref. 24) and Cebecl and

Stewartson (Ref. 25) independently derlved a condition that the group

velcolty ratio ought to be real. This fixes direction of growth. It seems

reasonable to follow disturbances that grow the most, so the second

condition is that the growth rate should be a maximum. This fixes the wave

angle. However, this angle may vary as the boundary layer develops. By

providing these conditions, all the arbitrariness in the problem has been

eliminated and the N factor calculation may proceed.

. WAVE-PROPAGATION (OR HOW TO COMPUTE N?)

- SPATIAL STABILITY

5 PARAMETERS: REAL (_,B,_); Im(_,_)

TWO CONDITIONS PROVIDED BY DISPERSION RELATION

FOR FIXED REAL (_), TWO CONDITIONS NEEDED

NAYFEH (1979), CEBECI AND STEWARTSON (1979):

(i) GROUP VELOCITY RATIO (_/_) IS REAL

(2) MAXIMIZE GROWTH RATE _ = - _z - _i(_Bl_)
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TRANSITION IN 3-D BOUNDARY LAYERS (CONCLUDED)

Alternatively one may use temporal stability. Now there are four

parameters: real (_, B, m) and imaginary part of m or mi" Again, two

conditions are provided by the dispersion relation. For fixed rea] m, one

can maximize _i to follow waves that amplify the most. When this maximum is
computed, it turns out (and it can also be shown mathematically) that group

velocity ratio is automatically real. One also needs group velocity trans-

formations to obtain spatial growth rates for computation of N factors.

This scheme is commonly referred to as the envelope method and is built in

computer codes SALLY (Ref. 26) and COSAL (Ref. 27). N factor results from

this approach have been found to be quite close to the ones obtained using

the spatial approach outlined in the previous figure.

A third approach is the one that is commonly used by Boeing and is

called the NcF/NT_ S approach. In this approach, different methods of
integration are used for crossflow and T-S waves. The crossflow waves are

assumed always to be stationary and are subjected to the condition that the

curl of the wavenumber vector vanishes - a condition that is strictly only

true for conservative wave systems. A boundary layer is not considered to

be such a system. The direction of growth is the same as the external

streamline direction. The T-S waves, on the other hand, always orient

themselves at some fixed angle with respect to the external streamline. The

direction of growth is again taken as the external streamline. This

approach then results in two sets of N factors, NCF for crossflow

disturbances and NT_ S for T-S waves as described above. The N factors are

then correlated with experimental transition data on swept-back wings.

TEMPORAL STABILITY

4 PARAMETERS: REAL (_,_,_,);

FOR FIXED REAL (,_):

(i) MAXIMIZE ,_,.
z

lm(_)

232

GROUP VELOCITY RATIO AUTOMATICALLY REAL

(2) SPATIAL GROWTH RATE: ,_=

- BOEING'S NcF/NTs APPROACH

NCF

NTS

"i (3"'r 9:_:r}

(i) IRROTATIONALITYOF WAVE NUMBER VECTOR

(2) GROWTH IN THE DIRECTION OF EXTERNAL STREAMLINE

(i) FIXED WAVE-ANGLE

(2) GROWTH IN THE DIRECTION OF EXTERNAL STREAMLINE



N FACTORS FOR F-Ill TEST CASK NO. 19

If one uses the first or the second approach and computes N factors for

a range of frequencies without a priori labelling the waves as crossflow or

T-S, then most often it turns out that N for the most amplified wave is

around 9-11. An example, using the envelope method, is provided in this

figure for F-ill Test Case No. 19 where the computed N factor is about 9.

The corresponding Boeing calculation yields NCF = 2.2 and NT_ S = 5.4.

However, in cases where transition is closer to the leading edge and the Cp
distribution is such that large growth takes place very near the leading

edge, then the envelope method will give very high N's if curvature terms

are not included in the analysis. The reason is that the correct stability

equations do contain curvature terms but it is for simplicity that they are

ignored. However, very near the leading edge both the body and streamline

curvature have a dominant role and they ought to be in the governing

equations. To make a convincing case for the importance of streamline and

body curvature, we present two cases in the next two figures.

M = 0.83, A = 16.1o, CL = 0.379, REc = 23.3 X 106

lO 3500 HERTZ

i000 HERTZ

ERTZ BOEING I

O: I I I I I
0 .I .2 .3 .q .S

XlC

NCF = 2.2

NTS = 5.4
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N FACTORS FOR ROTATING DISK FLOW

The first of these cases is the classical problem of a disk rotating in

an otherwise quiescent ambient. The mean flow that develops on the disk has

an exact solution to the Navier-Stokes equations and is also subjected to

the crossflow instability and for that reason has long been used as a model

problem for the swept leading-edge flow. Cebeci and Stewartson (Ref. 25)

using the Orr-Sommerfeld equation as the stability model found that N comes

out to be about 20. Their result suggested that perhaps the eN method,

which worked so well for two-dimensional flows, will not work for three-

dimensional boundary layers. However, it was shown by Malik, Wilkinson, and

Orszag (Ref. 28) that when the full sixth-order stability model is used,

including the streamline curvature effects and Coriolis force (an effect

present due to rotation), then N drops to about ii which is in line with the

2-D values. The importance of the full sixth-order system was also

demonstrated by the wavepacket computations of Mack (Ref. 29) for the

Wilkinson-Malik disk experiment (Ref. 30). There, Mack noted that he could

simulate all the fine details of the experiment only when he used the sixth-

order system of Malik, Wilkinson, and Orszag.

N

25

20

15

10

5

0

(a) Orr-Sommerfeld equation

(b) Sixth-order equation

Ii--Transition

/ Ii(b)

I _ / I I I

200 400 600
R
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N FACTORS FOR SWEPT CYLINDER

Another case for the inclusion of curvature terms in the stability

model may be made by considering the experiment of Poll (Ref. 31) on a swept

cylinder which simulates the leading edge of a swept wing. For simplicity,
let us concentrate on cases 3 and 4 in the figure. For case 3, when

computations of the N factor are carried to the transition location without

curvature terms, N factor is about 17. If the curvature terms (both body

and streamline) are included, then N drops to around ii. The most amplified

waves are not stationary, though the theory does predict the correct wave-

length of the stationary disturbances measured from oil-flow photographs.

In case 4, flow was still laminar at the last measured station.

Without curvature, an N above I0 is computed. With curvature, an N of 6 is

computed indicating no transition. The most amplified wave in this computa-

tion was about i000 Hertz. Poll, with a hot-wlre, observed disturbances

with a frequency of about 1050 Hertz. The unsteady disturbances have also

been observed in the recent experiments of Bfppes and Nitschke-Kowsky (Ref.

32.).

Cross section-

16

12

C/x _ YExtemal N 8

_ streamline 4

0

Case no.

Computational 1
2

Experimental 3

4

N = In AIAo

Case 1,2,3
1000 Hz---No curvature /

,,1 10 - /
,,/2 / f(Hz)

,'/ ,-3 8 - ./ ,-1000

/ /r8o Imol
/ ,, _ 1 6 / //9_- 500

N///_//Case f(Hz) 4 /

,T .ooo300O 2 0

_/"/, , 3, 2000 ./

.1 .2 .3 .4 0 .1 .2 .3 .4
x/C x/C

.A. Rc xlO'e

30 ° 3.8

55 ° 1.7

60 ° 1.3

63 o 0.9

Case 4

No transitiondetected
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CALIBRATION OF e N METHOD FOR TRANSITION PREDICTION/LFC DESIGN

The list of cases where e N works is quite long. This includes the work

of A.M.O. Smith and others. The conclusions from these applications are

that when the mean flow is correct and the linear stability equations

include dominant physical effects, N is of 0(9-11) for a low disturbance

environment.

LOW-SPEED

. AXIS. (INCL. HEATING IN WATER. PRESSURE GRADIENT STABILIZATION)

. CONCAVE (G_RTLER)

. ROTATING DISK

. 2-D WINGS (FLIGHT)

. 3-D (SWEPT WING. FLIGHT & W.T,)

. SWEPT L,E, REGION (CONVEX CURV. SURFACE AND IN-PLANE STREAMLINE CURV.)

HIGH-SPEED

AXIS. (FLIGHT & W.T.)

G_RTLER

SWEPT LEADING EDGE

CONCLUSIONS FROM THESE APPLICATIONS:

WHEN LINEAR THEORY HAS CORRECT PHYSICS. THErl N-'vO(9-11) FOR BACKGROUND

DISTURBANCES OF 0(.05%)
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POSSIBLE STRFAM/WALL DISTURBANCES CRITICAL TO BOUNDARY-LAYER TRANSITION

However, the list of things that can affect transition is also very
long. For that reason, the eN method is not a general method for transition

prediction. However, it is applicable to LFC studies since there a designer
will strive hard to minimize all kinds of disturbances in order to obtain

long runs of laminar flow.

e ROUGHNESS

- DISCRETE

DISCONTINUOUS

- TWO-DIMENSIONAL

THREE-DIMENSIONAL

STEPS

- GAPS

PARTICLE IMPACT/EROSION

- CORROSION

- LEAKAGE

• ACOUSTIC ENVIRONMENT

- ATTACHED FLOW

- SEPARATED FLOW

- PROPULSION SYSTEM

- VORTEX SHEDDING

• PARTICLES

ICE CLOUDS

- RAIN

ALGAE

SUSPENSIONS

FAUNA (INSECTS, FISH, ETC.)

WALL WAVINESS

- TWO-DIMENSIONAL

THREE-DIMENSIONAL

- SINGLE WAVE

MULTIPLE WAVE

- DISTORTION UNDER LOAD

e SURFACE AND DUCT VIBRATION

• STREAM FLUCTUATIONS AND VORTICITY

- PROPELLER WAKES

- OCEAN SURFACE

- BODY WAKES (FISH/AIRCRAFT)

- HIGH SHEAR AREAS (WEATHER FRONTS/

JET STREAM EDGES/OCEAN CURRENTS)

• LFC SYSTEM-GENERATED DISTURBANCES

VORTEX SHEDDING (BLOCKED SLOTS,

HOLES, PORES)

ACOUSTIC OR CHUGGING

- PORE DISTURBANCES

- NON-UNIFORMITIES
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WAVE INTERACTION IN BOUNDARY LAYERS

The possibility of wave-interactions Is a matter of great concern to an

LFC designer. While there are many possible regions of interactions, only

the cases where crossflow or Gortler is flnite-amplitude and T-S is infinit-

esimally small will be discussed here. Reed (Ref. 33) developed a theory to

compute such interactions on X-21 wing and showed that in the presence of

flnlte-amplitude crossflow vortices, T-S waves are excited. The N factor

for these T-S waves jumps from about 0.5 to 8.5 due to what is commonly

known as "double exponential growth" (Ref. 34). However, it was pointed out

by Malik (Ref. 35) that the excited waves have unphysically long wavelengths

at finite Reynolds numbers. Later, Reed* did not find the explosive growth

of T-S waves (observed in Ref. 33) in other swept-wing boundary layers.

An earlier theory by Nayfeh (Ref. 36) on Gortler/T-S interaction had

shown a similar type of "double exponential growth" of T-S waves in the

presence of finite-amplitude Gortler vortices. According to his theory, T-S

waves with spanwise wavelength twice that of the Gortler wavelengths are

excited. We have performed a computation to test the Gortler/T-S interaction

of the type suggested by Nayfeh's theory. This Navier-Stokes simulation is

limited in scope since it uses periodic boundary conditions in the stream-

wise direction; this implies a parallel boundary layer, which is a common

practice for boundary-layer transition simulations on flat plates (Ref. 6

and Ref. 9). However, if the Gortler/T-S interaction is dominated by non-

parallel effects, the computation will fail to capture it. Nayfeh (Ref. 36)

mentioned that non-parallelism had little effect on the excited T-S wave.

*Reed, H., Arizona State University, private communication, 1986.

o CROSSFLOW/T-S INTERACTION

- REED'S (1984) THEORY OF DOUBLE EXPONENTIAL GROWTH

- CONCERN FOR HYBRID LAMINAR-FLOW CONTROL

I GO'RTLER/T-S INTERACTION

- NAYFEH'S (1981) THEORY OF DOUBLE EXPONENTIAL GROWTH
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NAVIER-STOKES SIMULATION OF _RTLER/T-S INTERACTION IN A BOUNDARY LAYER

First, computation is made with the Gortler vortex having a 1% initial

amplitude which is superposed on the Blasius flow. The Gortler vortex is

noted as (0,2B) mode in the figure. Also included in the initial conditions

are two oblique T-S waves (e,_=8) with amplitude of .1%. The figure presents

energy in various modes as a function of time. For simplicity let us con-

centrate on the primary Gortler (0,28) mode and oblique T-S (e,B) mode. The

T-S mode does not show any sign of strong instability. Towards the end of

the computation, its growth rate actually drops slightly below the linear

theory result. A notable feature in the figure is the strong growth of the

first harmonic, i.e., (0,28)mode. This is consistent with the experiment

of Aihara and Koyama (Ref. 37).

An error in Nayfeh's paper (Ref. 36) was found by Malik (Ref. 35).

When corrected, Nayfeh* finds that the growth rates of the excited T-S waves

are small. However, he maintains that strong excitation may take place at

some other values of parameters _, 8, R and G.

*Nayfeh, A. H., Virginia Polytechnic Institute and State University, private

communication, 1987.
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GORTIJ_T-S INTERACTION h'BRN GO_I"t.RR AMPLI'I'b'DR IS L&RCR

Another calculation was made with a 2% initial amplitude for the Gortler

vortex, and the solution was carried to longer times. The G_rtler mode reaches

an equilibrium state at which time the (_,B) mode grows fast but then other

oblique modes (such as the (2_,2_) mode) also show strong instability. It

should be pointed out that at this stage the amplitude of the fundamental has

reached in excess of 30%. At these amplitudes interactions are not a

concern for the LFC designer. However, we have not yet searched for

possible interactions when both G_rtler and T-S have about the same finite

amplitude.
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CONCLUSIONS

i. When transition occurs in a low-disturbance environment, the eN method

provides a viable design tool for transition prediction and LFC in both

2-D and 3-D subsonic/supersonic flows. This is true for transition

dominated by either T-S, crossflow, or Gortler instability.

2. If Gortler/T-S or crossflow/T-S interaction is present, then the eN will

fail to predict transition. However, there is no evidence of such

interaction at low amplitudes of Gortler and crossflow vortices.
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